Training to Build Excel Collaborators

Problem/Challenge:

- Microsoft Excel tools have become common place in managing many of our everyday data analysis, tabulation and organization efforts. In our years of creating robust tools for our clients, we have identified the following challenges that become a source of consternation for many of our clients:
 - o Data validation and QA
 - o Difficulty managing advanced formulas
 - o Splitting data across multiple workbooks

Solution:

- After several on-site training classes for clients, we held a public session at the 4-C Environmental Workshop in February 2020
- The training process started with just a toolbox we created for our internal use
- Then we added a design section to address what we think about when we build

Benefits:

- Better organized workbooks save organizational time by reducing the effort for review and QA
- Rigorous formula use will decrease the chances things will break as changes are made over time
- Time spent on design helps make sure that the designer won't paint into a corner that later forces the workbook to be scrapped

g Rack	Loading Material	Throughput ²	Temperature ³	Pressure ⁴	Weight ⁵	
		(gallons/month)	(°F)	(psia)	(lb/lb-mole)	
	Gasoline (Regular)	100,000	52	4.6828	60.00	
ıck	Gasoline (Premium)	50,000	59	3.4681	65.00	
	Gasoline (Total)	150,000				
	Total	300,000				
	#2 Distillate	400,000	63	0.0073	150.00	
Car	Naphtha	215,300	64	6.3742	65.00	
	Asphalt	-	351	0.0356	375.00	

Tr

Rail

- Contrast will make data printable and avoid wash-out if projected
- Units displayed in a row, and every column with data has them
- Figures have same significant figures and are right justified

Reliable Unit Conversion Tool

jbe

Problem/Challenge:

- Calculations that require unit conversions are often embedded in complex formulas and therefore difficult to check
- More often than acceptable, the inverse of the proper conversion is accidentally applied

Solution:

- EPA's AP-42 started the process with a good format for factors
- JBE has converted this into an interactive tool that can select and deliver to a worksheet
- The EPA factor list did not contain all instances where there was a "from A to B," and also a "from B to A," so we added them to the table using reciprocals now the list is much more useful
- By using the tool, the choice of the right factor is displayed in a standard way

Benefits:

- Only having the factor appear in one place will reduce error potential
- Following this work practice will reduce QA time by reviewers
- Reducing errors in calculations will have a significant impact

"lives" on the worksheet

dropdowns are used to select just the factors you need for your worksheet

Chemical Mixture Flash Tool

jbe

Problem/Challenge:

- Estimating vapor pressure and vapor speciation from lab test data for a petroleum or chemical mixture is a complicated calculation
- Liquid vapor pressure may not be available for "what if" mixtures

Solution:

- EPA's AP-42 Table 7.1-3 provides all the ingredients needed to produce the results needed
- By standardizing the constituent list differing lab results can be accommodated more efficiently
- Surrogate alkane compounds are used to "fill out" the composition so flash results are truly representative (this follows EPA ICR methodology)

Benefits:

- Tool output can be utilized in storage tank emissions calculations effectively because it produces vapor pressure results from -30 F to 300 F in a single pass
- All streams needed for a refinery can be "processed" at once to reduce labor required significantly when changes happen
- Tool can be used for lots of "what if" calculations that can be produced "side-by-side"
- Data in the tool is all from publicly available sources so making it ideal for studies

- All petrochemicals listed in AP-42 are available as input choices these cover likely refinery TRI and Tier II listed chemicals and MACT CC HAPs
- Typical refinery streams are all available with public speciation

2	Α	c	D	F	s	Т	х	Ŷ
1					N-BUTANE	ISOBUTANE	N-PENTANE	ISOPENTANE
2				Formula		C4H10	C5H12	C5H12
3				CAS #	00106-97-8	00075-28-5	00109-66-0	00078-78
16	Str #	Stream Name	Tab For Flash	MW (lb/lb-mol)	58.12	58.12	72.15	
17				Values in Wt %				
18	1	National Average	A		0.85	-	0.65	
19	2	Bakken	В		3.07	0.82	3.15	2.1
20	3	West Texas Intermediate	c		0.65		2.00	-
21	4	North Slope - Exxon	D		1.53	0.31	1.70	0.9
22	5	Arab Light	E		0.93	0.19	1.37	0.7
23	6	Cold Lake	F		0.91		4.46	-

Petrochemical

properties

physical

- 54 petrochemicals listed in AP-42 are available as speciation
- Users can modify existing data or provide their own
- Common refinery streams are speciated based on public data

	А	В	С	D	L	м	N
1	Tank Droduct	Tab Namo	Liquid	Vapor Molecular			
2	Tank Product	Tab Name	(lb/aal)	Weight	40	50	60
3			(ID/gui)	(g/mol)	F	F	F
4	National Average	Α	6.461	51.053	1.4435	1.7376	2.0770
5	Bakken	В	6.080	49.472	6.9182	8.2792	9.8399
6	West Texas Intermediate	С	6.454	57.435	1.0105	1.2424	1.5155
7	North Slope - Exxon	D	6.452	55.244	2.6045	3.1636	3.8136
8	Arab Light	E	6.440	52.955	2.1448	2.5966	3.1211
9	Cold Lake	F	6.389	61.595	1.5616	1.9419	2.3942
10	Louisiana Light Sweet	G	6.441	49.667	6.1601	7.3548	8.7191
11	West Texas Sour	Н	6.442	52.917	2.1867	2.6461	3.1792

Data Substitution Tool

jbe

Problem/Challenge:

- Often process data contains gaps or instances where the meter is malfunctioning or displays erratic data at low rates of flow or values above its span
- Selecting daily, monthly or annual data from the data historian will cause this data to skew calculated results significantly

Solution:

- The process of adjusting data must be well-documented and performed in such a way that accidentally using the adjusted results for a template will not occur
- JBE has developed a set of formulas and a well-thought-out layout to display results clearly

- Quantifying instances where erroneous subtraction is occurring and eliminating them is key to compliance
- Filling in data where total emissions limits are in place is key to avoiding under-reporting performance
- This approach is ideal for supporting adjustments in the face of audits
- Failure to report exceedances properly is key to avoiding enforcement and potential penalties

Fenceline Data Analysis Tool

jbe

Problem/Challenge:

- Analysis of benzene fenceline monitoring data is not effective if each monitoring event is not considered along with wind rose data
- EPA's on-line tools do not provide any met data perspective (EPA does not even collect this data)

Solution:

- JBE develop a unique approach to generating the wind roses and importing them into a trend line, all within Excel
- Doing thee calculations in Excel allows the user to perform additional analysis without the complication of a data export step from a custom third-party software tool

- Using JBE's approach, lab data and met data can be converted into an integrated output, avoiding high third-party tool license fees
- JBE Excel data has been wired to the EPA CEDRI upload format to minimize labor in submitting periodic reports

Flowsheet Simulation Tool

jbe

Problem/Challenge:

- Refineries struggle to analyze the potential emissions impacts from changes in their process due to alternative feedstocks, crude supply changes or operational strategies
- Where a critical shortage in available process engineering support to run simulations exists, an alternative is essential

Solution:

- JBE has created an Excel-based flowsheet model that can be used to estimate production results and hence emissions from changes in tank throughputs for various products.
- Actual refinery data can be used if available
- University of Calgary *Prelim* flowsheet model can be used to estimate yields once a crude slate is specified if refinery-specific yield data is not available

- Effective modeling can provide rapid turn-around on "what-if questions" seeking to determining if emissions would increase enough to require a permit revision
- This approach avoids the labor cost associated with process simulation using models like Chemcad, ProMax or HYSIS.

Case Study Evaluation Table						
	Case3	< Select Case #	Case1		Case2	
	User		User	2018	User	Higher
	Input		Input	Actual	Input	Rate
	(MBPD)		(MBPD)		(MBPD)	
Crude Rate	110,000		98,000		105,000	
	User	Calc	User	Calc	User	Calc
	Input	(Vol)	Input	(Vol)	Input	(Vol)
	(fract)	(MBPD)	(fract)	(MBPD)	(fract)	(MBPD)
User-Defined Inputs						
Crude Unit Yields	1.000					
Raw Naphtha	0.167	18,367	0.167	16,364	0.167	17,532
Raw Kerosene	0.169	18,580	0.169	16,553	0.169	17,735
Raw Diesel	0.071	7,811	0.071	6,959	0.071	7,456
LVGO	0.094	10,358	0.094	9,228	0.094	9,887
HVGO	0.143	15,754	0.143	14,036	0.143	15,038
Reduced Crude	0.356	39,129	0.356	34,860	0.356	37,351
Calculated Outputs						
Product for Sales	96,041	0.980	83,402	0.851	89,359	0.912
Propane	9	0.000	8	0.000	9	0.000
Butanes	372	0.004	241	0.002	258	0.003
Gasoline	16,513	0.168	12,640	0.129	13,543	0.138
Jet/Kero	17,297	0.177	15,410	0.157	16,511	0.168
Diesel	22,720	0.232	20,242	0.207	21,688	0.221
Reduced Crude	39.129	0.399	34,860	0.356	37.351	0.381

Release Reporting Tool

jbe

Problem/Challenge:

- In the rush to respond to an emergency, making a timely report is challenging given competing priorities
- There is never enough time to locate process data required to apply RQ's

Solution:

- JBE's prompt reporting tool is designed to gather up required process information so it is available in an emergency
- Applying RQ's can be complicated, especially if the staff member is not familiar with all environmental media
- The release quantity estimate is applied to the situation based on the stored data, avoiding the need to locate data under pressure

Benefits:

 Making timely and accurate release reports is key to avoiding enforcement and fines

Multiple Plan Generation Tool

Problem/Challenge:

- Updating multiple plans as sites changes can be laborintensive and prone to transcription errors
- Comparing elements for multiple plans or reports that are similar, but have certain site-specific aspects is time-consuming

jbe

Solution:

- By using a table showing all of the driving requirements, the plan can be organized to follow the flow of the regulation (actually required for an SPCC)
- The use of tables to generate multiple versions of the plan in separate tabs (using formulas) eliminates the need to make changes to each plan individually as updates occur.

- Organizing the master template to include the requirement text helps reviewers make sure that the requirements are properly addressed by the plan.
- The table also helps ensure that all of the plans approach requirements in the right way and that all site-specific data is matched to the right site

ACME Company											
Requirement Requirement Text		Default Plan Contents	Site A Plan	Site B Plan	Site C Plan						
40 CFR 112.8(d)(4)	You must also conduct integrity	At present there are no	At present there are	All newly-installed or	At present there are						
	and leak testing of buried piping	buried oil pipelines on	no buried oil pipelines	replaced buried oil transfer	no buried oil						
	at the time of installation,	site.	on site.	piping will be provided with	pipelines on site.						
	modification, construction,			a protective wrapping and							
	relocation, or replacement.			coating and will comply with							
				rederal and state cathodic							
				protection requirements.							
	Having a master table speeds										
SPCC Plan - Site	С			the generation p	orocess						
Requirement	Plan Section	Plan Ele	ement	 Excel tables can 	be formatted						
40 CFR 112.8(d)	(4) Spill Prevention - Bur	ied Piping At prese	ent there are no	to simulate the Document	look of a Word						
		bulleut	on pipennes on	Docament							

TRI Threshold Determination Tool

jbe

Problem/Challenge:

- Failure to perform a compliant TRI report threshold analysis could result in failure to report a chemical and leave a facility open to enforcement or fines
- The process is complicated because of the role of de minimis exemptions the fact that you have to calculate emissions as part of the threshold process (essentially a "do-loop")

Solution:

- JBE has developed a comprehensive process to perform and document the threshold determination that is linked to the determination of emissions
- The process has been reviewed by EPA NEIC in a compliance audit and judged "one of the best we've seen"

- Making the threshold determination part of the annual TRI report preparation will reduce the chances of overlooking a chemical; whereas an evergreen approach taken by some runs that risk with each process change each year
- Aggregating TRI compounds in all purchased chemicals comprehensively helps avoid the risk posed by failing to report, but can also help identify chemicals that can be dropped from reporting for a good news story.

Unit	Product	Volume	Annualized Quantity	Benzene	Hydrogen Sulfide	Methanol	
		(bpd)	(lb/yr)	(lb)	(lb)	(lb)	
				71-43-2	7783-06-4	67-56-1	
Crude Unit	Crude	100,000	27,988,800	5,597,760	-	-	
Products:	Raw Naph	33,000	9,236,304	184,726	-	-	
	Raw Kero	17,000	4,758,096	-	-	-	
	Raw Diesel	4,000	1,119,552	2,239	-	-	
	LVGO	8,000	2,239,104	-	-	-	
	HVGO	8,000	2,239,104	-	-	-	
	Asphalt	25,000	6,997,200	-	13,994	-	
FCC Unit	Treated Gas Oil	1,807	505,726	2,493	-	-	
Products:	LCO	159	44,613	2,231	-	-	
	Cat Gas	1,587	444,319	533,183	-	-	
	Prop/But	60	16 793				

- Manufactured products are estimated based on the products for each unit
- Chemicals processed are estimated from the feed to each unit
- Otherwise used chemicals are based on purchase data
- Note that impacts from wastes, spills and air and water emissions are included

Source Description	Benzene	Hydrogen Sulfide	Methanol
	(Ib)	(lb)	(lb)
Manufactured	25,000	127,000	1.1
Added Contribution - Monitored Fugitive Leaks	100	0	
Added Contribution - Unmonitored Fugitive Leaks	1,000	-	-
Added Contribution - WW Separator Air Emissions	1,000	-	
Added Contribution - Flare 1 Air Emissions	1,000	72	
Added Contribution - Storage Tank Air Emissions	500	43	
Added Contribution - Loading Air Emissions	1,000	-	-
Added Contribution - Sewer Air Emissions	2,000	-	-
Added Contribution - One Time Releases to Air	0	1	-
Added Contribution - One Time Releases to Land	0	1	-
Added Contribution - One Time Releases to Water	0	-	-
Added Contribution - Wastewater Effluent	-	-	-
Subtotal	31,660	127,438	-
Less Threshold	25,000	25,000	25,000
Manufactured - TRI Chemicals Exceeding Threshold	6,660	102,438	
Processed Products	500,000	250,000	-
Added Contribution - Wastes	1,000	1,500	
Less Threshold	25,000	25,000	25,000
Subtotal	476,000	226,500	
Processed - TRI Chemicals Exceeding Threshold	476,000	226,500	
Otherwise Used (Threshold Exceeded)	-	-	5,950
Discard - Concentration Below De Minimis Level			
Subtotal	-	-	5,950
Less Threshold	10,000	10,000	10,000
Otherwise Used - TRI Chemicals Exceeding Threshole			
For Reference:			
Form R in 2017?	Yes	Yes	Yes
P			

Regulation Download Tool

jbe

Problem/Challenge:

- Complete regulatory citation numbers are hard to construct from the hierarchy of lettering and numbering when each element is several sentences long
- The best regulation compliance listing is a matrix that includes full text and full numbering of it

Solution:

- Each regulation publisher has its own publication method and each regulatory entity has its own numbering system
- JBE has developed a process to read the sequence and deduce the numbering that it describes
- The VBA code to drive the import process is custom for each situation; it's not perfect but it can be manually adjusted as needed

- A compliance register cannot be considered viable unless the capability to develop full text numbering is part of the construction process
- If well-constructed, the current set of requirements can be downloaded, processed and checked in a few minutes
- Otherwise, a manual cut-and-paste operation is much more labor-intensive

	А	В	С	D	Е	F	G	Н	к	L
1	Title 🖕	Chap' 🚽	ubcha 븣	Rul	(a) 🚽	(1) 🗸	(A) 🗸	(i) 🖵	Concatenate 🗸	Rule Text 👻
11	30 TAC	106	Α	106.4					30 TAC 106.4	\$106.4 Requirements for Permitting by Rule
12	30 TAC	106	Α	106.4	а				30 TAC 106.4(a)	(a) To qualify for a permit by rule, the following general requirements must be met.
13	30 TAC	106	Α	106.4	а	1			30 TAC 106.4(a)(1)	(1) Total actual emissions authorized under permit by rule from the facility shall not exceed the following limits, as applicable:
14	30 TAC	106	Α	106.4	а	1	Α		30 TAC 106.4(a)(1)(A)	(A) 250 tons per year (tpy) of carbon monoxide (CO) or nitrogen oxides (NOX);
15	30 TAC	106	Α	106.4	а	1	В		30 TAC 106.4(a)(1)(B)	(B) 25 tpy of volatile organic compounds (vOC), sulfur dioxide (SO2), or inhalable particulate matter (PM);
16	30 TAC	106	Α	106.4	а	1	С		30 TAC 106.4(a)(1)(C)	(C) 15 tpy of particulate matter with diameters of 10 microns or less (PM10);
17	30 TAC	106	Α	106.4	а	1	D		30 TAC 106.4(a)(1)(D)	(D) 10 tpy of particulate matter with diameters of 2.5 microns or less (PM2.5); or
18	30 TAC	106	Α	106.4	а	1	E		30 TAC 106.4(a)(1)(E)	(E) 25 tpy of any other air contaminant except:
19	30 TAC	106	Α	106.4	а	1	E	i i	30 TAC 106.4(a)(1)(E)(i)	(i) water, nitrogen, ethane, hydrogen, and oxygen; and
_										

Test Data Management Tool

jbe

Problem/Challenge:

- Emissions calculations that are submitted to an agency must also be compared to permit limits
- Emissions estimates must be based on the latest test data if there is a test
- Keeping up with this data over time is challenging

Solution:

- JBE has developed a unique test results database approach using Excel that can be made part of emissions calculations workbooks
- The key is to organize the data as one contaminant as the source to which the test applies along with the test date
- A complex formula can mark the result as the latest, and this can be connected to the emissions calculation tab in the workbook for calculation and limit comparison
- To be effective, the team must update the list with each test result

Benefits:

 Using the right data is key to achieving permit compliance, and doing this with formulas will reduce the chances for errors of omission.

Safety Data Sheet Hazard Identification jbe

Problem/Challenge:

- Making consistent determinations from SDS's for physical and health hazards i.e., is combustible, is it a chronic hazard?
- Judging proposed chemicals quickly to determine if they should be accepted for use.

Тохпо	t SDS analysis so	ftware	JBE chemi	cal inve	ntory workbook
Optical character recognition (OCR)	Recognition of constituents	Acquisition of hazard codes for constituents	Translation hazard c into act categor	on of odes tual ries	Report showing mixture hazards

Solution:

- JBE has identified a unique software product that performs an OCR process on SDS's and locates the constituents.
- The *Toxnot* web application takes the results of the OCR and queries toxicology data online to identify hazards for these constituents that are reported as hazard codes (H Codes)
- JBE has developed a series of clever formulas to convert these results into a hazard table that can be used for Tier Two reporting or chemical use approval

Benefits:

 Reducing labor required to analyze an SDS to identify hazards. This can be important if a facilities proposes lots of chemicals for use

